Measuring non-radiative relaxation time of fluorophores with biomedical applications by intensity-modulated laser-induced photoacoustic effect
نویسندگان
چکیده
Modulated tone-burst light was employed to measure non-radiative relaxation time of fluorophores with biomedical importance through photoacoustic effect. Non-radiative relaxation time was estimated through the frequency dependence of photoacoustic signal amplitude. Experiments were performed on solutions of new indocyanine green (IR-820), which is a near infrared dye and has biomedical applications, in two different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times slower non-radiative relaxation for the solution of dye in DMSO was observed comparing with the aqueous solution. This result agrees well with general finding that non-radiative relaxation of molecules in triplet state depends on viscosity of solvents in which they are dissolved. Measurements of the non-radiative relaxation time can be used as a new source of contrast mechanism in photoacoustic imaging technique. The proposed method has potential applications such as imaging tissue oxygenation and mapping of other chemophysical differences in microenvironment of exogenous biomarkers.
منابع مشابه
The advantage of using a diode laser instead of a Q-switched laser in photoacoustic imaging of tissues
Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be ...
متن کاملDesign and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber
Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...
متن کاملPhotoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser.
We build a photoacoustic imaging system using an intensity-modulated continuous-wave laser source, which is an inexpensive, compact, and durable 120-mW laser diode. The goal is to significantly reduce the costs and sizes of photoacoustic imaging systems. By using a bowl-shaped piezoelectric transducer, whose numerical aperture is 0.85 and resonance frequency is 2.45 MHz, we image biological tis...
متن کاملComparison of intensity-modulated continuous-wave lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications
Using a Green's function solution to the photoacoustic wave equation, we compare intensity-modulated continuous-wave (CW) lasers with a chirped modulation frequency to pulsed lasers for photoacoustic imaging applications. Assuming the same transducer is used in both cases, we show that the axial resolution is identical and is determined by the transducer and material properties of the object. W...
متن کاملNon-contact biomedical photoacoustic and ultrasound imaging.
The detection of ultrasound in photoacoustic tomography (PAT) usually relies on ultrasonic transducers in contact with the biological tissue through a coupling medium. This is a major drawback for important potential applications such as surgery. Here we report the use of a remote optical method, derived from industrial laser-ultrasonics, to detect ultrasound in tissues. This approach enables n...
متن کامل